您好,欢迎访问RTO、RCO、RTO焚烧炉专业制造商-无锡泽川环境科技有限公司!

RTO 烟气余热利用综合节能技术

发布时间:2019-02-26 20:45:00 点击:

RTO焚烧炉RTO专业生产厂家无锡泽川环境2019年2月26日讯 在汽车涂装自动生产线中,烘干设备是主要耗能生产设备之一,通过 RTO(蓄热式废气氧化装置)烟气余热利用综合节能技术,对低温排放的烟气进行余热回收和利用,可以提高全厂的热效率,降低总体能耗,提高经济益;而且响应国家节能减排的政策,为社会环境保护作出一定贡献。

  关键词:RTO;能量流动;热管换热器;自动控制

  汽车涂装自动生产线上的烘干设备,是主要耗能生产设备之一,所以在满足安全生产并符合环保法规的前提下,烘设备的节能技术改进,是其重要的发展方向。在实际生产中,烘干设备的供热系统和废气处理系统的烟气排放热损失,约占总能耗的 25 %。虽然这些烟气的排放温度降至 200~250 ℃左右,就满足现在的环保法规要求,但这部分被排放的烟气仍然存在着能量回收的契机。对低温排放的烟气进行余热回收和利用,是涉及烘干设备、公用动力系统、其他区域耗能设备等综合性很强的系统节能技术,是涂装车间能源综合利用的典型课题,本文重点讨论 RTO(蓄热式废气氧化装置)烟气余热利用综合节能技术。

  1 RTO 技术的机理

  RTO(蓄热式废气氧化装置)烟气余热利用综合节能技术的机理如下:涂装车间各烘干设备在生产过程中产生的有机废气,通过废气管网集中被送到RTO 装置中,进行 750℃左右的高温焚烧处理;这些废气燃烧后产生的能量,被 RTO 内部的陶瓷蓄热体进行热量回用后,最终排入大气的烟气温度,被降到200~250 ℃之间。

  由于安全方面的因素,这部分最终排入大气的温度,必须在 120 ℃以上,但从 200~250 ℃到 120 ℃,这部分依然有能量回收的空间。采用水作为这部分烟气能量回收的介质,利用这些低温烟气的余热来制备热水,烟气的温度被降到 120℃左右后排入大气,而制备出的热水,可以输送到热水锅炉或其他需要热水的地方充分利用,从而实现烘干设备烟气排放余热回收利用的目的。

  2 排烟余热回收效益

  以 60 JPH 纲领的某汽车涂装线项目为例,RTO废气处理量为 8 万 m 3 / h,废气处理后排烟温度约为200 ℃。在保证烟囱抽力(抽力取决于烟囱高度和气体密度差,高度一定的情况下,排烟温度高抽力大)、防止凝结(温度低,换热器、烟囱内壁容易凝结物质,着火) 的基本条件下,可以采用换热器回收部分热量,使排烟温度降至 120 ℃后放。其余热回收经济效益计算公式如下:

  80 000(m 3 /h)×1.2×0.24×(200 - 120)×16(h/d)×250(d/a)×0.7(系统综合利用率)/ 8 000(天然气热值)= 645 120(m3 /a)

  645 120(m3 /a)×2.86(元 / m3 )= 185(万元 /a)

  上面计算中,效益随生产线的实际工作时间(年时基数)变化而变化。

  这一节能技术,设计之初首先需掌握车间用能设备的能量需求变化规律,以便合理计算水量和配置换热器,合理组织生产(RTO、锅炉与前处理等用能设备的联动),以提高系统能量综合利用率,最大化地回收能量。

  3 能量流动结构图

  能量流动结构图如图 1 所示。

RTO,RTO焚烧炉,蓄热式焚烧炉

  以 60 JPH 纲领的某汽车涂装线项目为例,车间锅炉房共有 5 台 2.8 MW 的燃气锅炉,主要供前处理、空调二次加热和少量其他生活需求见表 1。

RTO,RTO焚烧炉,蓄热式焚烧炉

  表 2 中的设计数据显示,烟气回收的能量,占车间热水平均量夏季需求的 29 %、冬季需求的 41 %、其他季节需求的 54 %,现场实际数据还受联动系统生产组织的影响。

  在这个能量体系中,RTO 最终的排烟温度取决于水路的水量、进出口温差;而现场数据变化,主要取决于动力需求变化。例如:前处理或空调等工艺设备的升温状态、保温状态下不同用能量;生产纲领满负荷生产、不满负荷生产、休息时段的用能量;季节变化车间能量需求不同等等,也就是说该联动系统存在一个综合利用率问题。

  4 余热回收系统组成

  整个余热利用系统,包括气路、水路、余热换热器和自动化系统等 4 部分组成(如图 2)。

RTO,RTO焚烧炉,蓄热式焚烧炉

  烟气管路包括气动切换阀、及进出口烟气温度探头、压差开关等监测元件;水路系统包括水泵、手动蝶阀、气动三通调节阀、安全阀、压力表、流量开关和进出口水温探头等监测元件。

  其中,主体设备是热管换热器,其传热效率高(具有超强的导热性、良好的等温性、热流密度可变性等特质),节能效果显著;具有良好的防腐蚀能力;装置体积小,只是普通热交换器的 1/3;使用寿命长,单根热管可拆卸更换,维护简单成本低(如图 3、图 4)。

RTO,RTO焚烧炉,蓄热式焚烧炉

  热管由管壳、吸液芯和端盖组成,将管内抽成1.3 ×(10 -1 ~10 -4 )Pa 的负压后,充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要,在两段中间可布置绝热段(如图 5)。

RTO,RTO焚烧炉,蓄热式焚烧炉

  热管是依靠自身内部工作液体相变来实现传热的传热元件,具有超常的热活性和热敏感性,遇热而吸,遇冷而放。

  5 烟气余热利用系统的控制要点

  由于系统涉及多个用能区域,一方面,各区域设备具有相对独立的自动化要求;另一方面,由于生产用能又相互联系,同时余热设备具有热水加热安全保护特性,因此各区域电控柜之间的连锁关系比较复杂,但完善的自动控制,是安全生产的保障。系统控制要注意如下要点:

  (1)基本状态。RTO 原始状态,烟气管气动阀位置:烟气不经余热换热器;水路原始状态,三通调节阀位置:水始终经过余热换热器。水路系统,调试时水路阀门初始设定水流量原则:排除烟温过低报警(水量过大)和水温过高报警(水量过小)的状况,选取相对合适的水量。

  (2)开机、关机信号。RTO 接到锅炉房水泵开动信号,流量开关(进水管路)有水流信号,烟气管路气动阀切换,烟气经过余热换热器。RTO接到锅炉房水泵停止信号(水泵待机),烟气管路气动阀切换,烟气不经过余热换热器;锅炉房接到烟气气动阀切换到位信号后,30 min 后,水泵停机。

  (3)烟温过低(<120 ℃)报警信号。出余热换热器后,排烟管路上设一个温度探头。当烟温低于 120℃时,给锅炉房提供低温报警信号,调节水路三通调节阀,减小经过余热换热器的水量。

  (4)水温过高(>95 ℃)报警信号。出余热换热器后,水管上设一个温度探头。当水温高于 95 ℃时,给 RTO 提供水温高温报警信号,RTO 烟气管路气动阀切换,烟气不再经过余热换热器。

  (5)烟气管路自动阀切换要求。自动风阀切换,要求按序执行。为避免自动风阀的故障,引起烘房熄火,在切换自动风阀时,需确保要求打开的风阀打开后,才可关闭需关闭的风阀。

  烟气管路气动切换阀:在任何时候与 RTO 系统相关的换热风阀和旁通风阀,始终有一个处于开到位状态。

  (6)设备故障信号。故障信号主要包括:水泵故障、烟气管路气动阀故障、水路三通调节阀故障等,还有一些其他故障。车间压缩空气停止,余热回收系统的换热阀及旁通阀均会关闭,此时会影响 RTO 系统的运行,需要确认 RTO 系统的状态。

  柜内总线掉站、PLC 当机及柜母线跳闸时,可能会导致 RTO 余热回收阀门状态信号瞬时丢失,影响RTO 系统运行,此时需要人员到 RTO 系统进行状态确认。

  6 结束语

  根据理论研究和工程实例表明,安装烟气余热回收装置,可以提高全厂的热效率,降低总体能耗;回收的烟气热量愈大,再利用能量愈多,节约燃料的量愈大。然而回收 RTO 烟气的余热也有一定限度,过分追求低的排烟温度和热水的温升,容易造成余热利用换热器内部烟气冷凝,从而引起设备腐蚀,这一点必须引起充分的注意。如果能够很好地利用限制之内的余热,不仅对涂装厂的经济效益有很大的提高,而且响应国家节能减排的政策,为社会环境保护作出一定贡献。

来源:《装备制造技术》